Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Singapore: researchers identify micro-organisms for better vegetable growth

For vegetables to grow well, it is not enough to just give them sunlight and water. They need a whole community of micro-organisms to help them grow healthily.

Now, a team of researchers from the National University of Singapore (NUS), led by Associate Professor Sanjay Swarup from the NUS Department of Biological Sciences, has identified almost 300 species of micro-organisms that grow together with common Asian vegetables. This is the first step towards helping high-tech urban farmers produce more crops with less chemical fertilisers.

Currently, what little is known in this field of research has been garnered mostly from standard plant species used in experiments, and they are non-vegetables. To address this gap, the NUS team collaborated with a commercial urban farm in Singapore. They obtained soil samples, as well as both the seedlings and mature plants of three common Asian vegetables - choy sum, kai lan and bayam. The microbes and their genetic material in the soil and on the plants were then extracted for analysis.

The value of microbial diversity
Assoc Prof Swarup, who is also affiliated with the NUS Environmental Research Institute (NERI) and the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) shared, “Green leafy vegetables are nutrient-dense and packed with bioactive compounds known for promoting human health. These leafy greens are short-cycle crops, suitable for adoption in various farming formats. Focusing our research priorities on this food group will address food and nutritional security and cater to both quantity and quality aspects of food production.”

The researchers sequenced the genetic material in the samples using a technique called metagenomics. It uses computational methods to analyse the diversity and characteristics of the genetic material without having to isolate and culture individual species of microorganisms. This method gave them a comprehensive picture of the microbial community in less time and with less effort.

Using a supercomputer, the researchers identified almost 300 species of bacteria and a group of single-celled, bacteria-like organisms known as archaea. From the data, they found that the microbes could potentially benefit the vegetables by providing nutrients, stimulating growth and suppressing pathogens. The findings of the four-year study were recently published in the journal Scientific Data.

For more information:
National University of Singapore 
[email protected] 



Publication date: