Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Study on basil growth in aquaponics system with catfish

Basil (Ocimum basilicum) was cultivated in Rostock, Northern Germany, in a decoupled aquaponic system with African catfish (Clarias gariepinus) under intensive rearing conditions by using three hydroponic components, the dynamic root floating technique (DRF), the raft technique, and grow pipes. A 25% of the recommended feed input still allowed African catfish growth and provided adequate nitrogen and calcium levels in the process water.

After 36 days, the plants were examined with respect to 16 different growth parameters. DRF performed significantly better than raft and/or grow pipes in 11 parameters. Total weight of basil was significantly higher in DRF (107.70 ± 34.03 g) compared with raft (82.02 ± 22.74 g) and grow pipes (77.86 ± 23.93 g). The economically important leaf biomass was significantly higher in wet and dry weight under DRF cultivation (45.36 ± 13.53 g; 4.96 ± 1.57 g) compared with raft (34.94 ± 9.44 g; 3.74 ± 1.04 g) and grow pipes (32.74 ± 9.84 g; 3.75 ± 1.22 g). Two main factors limited plant growth: an unbalanced nutrient concentration ratio and high water temperatures with an average of 28 °C (max 34.4 °C), which resulted in reduced root activity in raft and grow pipes.

DRF was able to maintain root activity through the 5 cm air space between the shoots and the nutrient solution and thus produced significantly more biomass. This suggests DRF to be used for basil aquaponics under glass house conditions with high-temperature scenarios. Future studies are needed to optimize nutrient loads and examine systems with the plant roots exposed to air (Aeroponics).

Read the complete article at www.researchgate.net.

Pasch, Johannes & Ratajczak, Benny & Appelbaum, Samuel & Palm, Harry & Knaus, Ulrich. (2021). Growth of Basil (Ocimum basilicum) in DRF, Raft, and Grow Pipes with Effluents of African Catfish (Clarias gariepinus) in Decoupled Aquaponics. AgriEngineering. 3. 92-109. 10.3390/agriengineering3010006. 
 

Publication date: