Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Study on improving plant health through nutrient remineralization in aquaponic systems

The exploitation of readily bioavailable fish excreta as a source of plant nutrients lies at the cornerstone of aquaponics farming. Research on nutrient cycling in aquaponic systems has devoted considerable attention to the plant uptake of dissolved nutrients in fish excreta; however, the integration of particulate-bound nutrients into downstream hydroponic farming has remained elusive.

The high amount of organic carbon present in fish sludge may lead to biofouling if directly incorporated into hydroponic circulation systems, reducing the utility of incorporating fish solids on a large scale. In this study, the team implemented a novel treatment system capable of reducing the carbon and nitrogen load of fish solids to produce a liquid fertilizer for a downstream hydroponics unit. Lettuce (Lactuca sativa) fertilized with exclusively a commercial nutrient solution, the biofilter effluent (coupled aquaponic system), effluent from the solids treatment system, or the latter two combined were grown in nutrient flow technique gutters downstream of a recirculating aquaculture system stocked with rainbow trout (Oncorhynchus mykiss).

While crop yields were lower for the aquaponic treatments compared to lettuce grown in a commercial nutrient solution, plant sap analysis demonstrated a contrasting picture with respect to internal nutrient concentrations. Lettuce grown in the commercial hydroponic solution were deficient in several mineral nutrients (Mg, Ca, Na, and Si) nor did they have higher iron concentrations despite the significantly higher EDTA-chelated aqueous iron (460 × greater than other treatments) in the nutrient solution. Nutrient uptake in the rhizosphere was not investigated on a molecular level, although stunted rhizosphere growth in the commercial nutrient solution control suggests a weakened capacity for nutrient uptake in comparison to other treatments. Alongside the remineralization of micronutrients, the solids treatment system addressed the common issue of excess carbon leading to biofouling via a total suspended solids reduction of 87.27% ± 9.95 during the coupled aquaponics cultivation period.

Ultimately, these data lead to two important conclusions. Firstly, optimizing nutrient bioavailability is not synonymous to increasing the presence of a nutrient in the water column. Secondly, estimating ideal nutrient solution concentrations involves both preventing nutrient blocking and improving bioavailability.

Read the complete research at www.researchgate.net.

Lobanov, Victor & Combot, Doriane & Pelissier, Pablo & Laurent, Labbe & Joyce, Alyssa. (2021). Improving Plant Health Through Nutrient Remineralization in Aquaponic Systems. Frontiers in Plant Science. 12. 10.3389/fpls.2021.683690. 

Publication date: