Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Research team reveals a ‘blueprint’ for photosynthesis

Researchers at Michigan State University (MSU), UC Berkeley, the University of Southern Bohemia, and Lawrence Berkeley National Laboratory (Berkeley Lab) have helped reveal the most detailed picture to date of important biological “antennae.”

Nature has evolved these structures to harness the sun’s energy through photosynthesis, but these sunlight receivers don’t belong to plants. They’re found in microbes known as cyanobacteria, the evolutionary descendants of the first organisms on Earth capable of taking sunlight, water, and carbon dioxide and turning them into sugars and oxygen.

Published this week in the journal Nature, the findings immediately shed new light on microbial photosynthesis — specifically, how light energy is captured and sent to where it’s needed to power the conversion of CO2 into sugars. Going forward, the insights could also help researchers remediate harmful algal blooms, develop artificial photosynthesis systems for renewable energy, and enlist microbes in sustainable manufacturing that starts with the raw materials of CO2 and sunlight.

“There’s a lot of interest in using cyanobacteria as solar-powered factories that capture sunlight and convert it into a kind of energy that can be used to make important products,” said Cheryl Kerfeld, a member of the MSU-DOE Plant Research Laboratory, which is supported by the U.S. Department of Energy. “With a blueprint like the one we’ve provided in this study, you can start thinking about tuning and optimizing the light-harvesting component of photosynthesis.”

“Once you see how something works, you have a better idea of how you can modify it and manipulate it. That’s a big advantage,” said Markus Sutter, a senior research associate in the Kerfeld Lab, which operates at MSU and Berkeley Lab.

Read the complete research at

Publication date: