Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Wheat yield potential in controlled-environment vertical farms

Wheat is the most important food crop worldwide, grown across millions of hectares. Wheat yields in the field are usually low and vary with weather, soil, and crop management practices. We show that yields for wheat grown in indoor vertical farms under optimized growing conditions would be several hundred times higher than yields in the field due to higher yields, several harvests per year, and vertically stacked layers. Wheat grown indoors would use less land than field-grown wheat, be independent of climate, reuse most water, exclude pests and diseases, and have no nutrient losses to the environment. However, given the high energy costs for artificial lighting and capital costs, it is unlikely to be economically competitive with current market prices.

Scaling current cereal production to a growing global population will be a challenge. Wheat supplies approximately one-fifth of the calories and protein in human diets. Vertical farming is a possible promising option for increasing future wheat production. Here we show that wheat grown on a single hectare of land in a 10-layer indoor vertical facility could produce from 700 ± 40 t/ha (measured) to a maximum of 1,940 ± 230 t/ha (estimated) of grain annually under optimized temperature, intensive artificial light, high CO2 levels, and a maximum attainable harvest index. Such yields would be 220 to 600 times the current world average annual wheat yield of 3.2 t/ha. Independent of climate, season, and region, indoor wheat farming could be environmentally superior, as less land area is needed along with the reuse of most water, minimal use of pesticides and herbicides, and no nutrient losses. Although it is unlikely that indoor wheat farming will be economically competitive with current market prices in the near future, it could play an essential role in hedging against future climate or other unexpected disruptions to the food system. Nevertheless, maximum production potential remains to be confirmed experimentally, and further technological innovations are needed to reduce capital and energy costs in such facilities.

Read the complete paper at pnas.org

Publication date: