Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Effects of exogenous ethanol treatment in nutrient solution on three herb species in an indoor vertical farming system

This study aimed to explore the possibility of exogenous ethanol treatment as a technology to regulate the growth and the synthesis of secondary metabolites in herbaceous plants. After transplantation, sweet basil, Korean mint, and sweet wormwood were cultivated in a controlled vertical farming system and consistently exposed to exogenous ethanol at concentrations of 0, 0.5, 1, 2, 4, and 8 mM. Their growth parameters, antioxidant activity, and secondary metabolite contents were measured to investigate the effects of the exogenous ethanol treatment on the three plants. The low-concentration ethanol treatments increased the shoot dry weight of the sweet basil and sweet wormwood compared to that of the control. As the ethanol concentration increased, the shoot fresh weight and leaf area in the sweet basil and Korean mint decreased compared to those of the control (0 mM). The DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging activity and total phenolic content of the three plants increased with the ethanol concentration, while the total flavonoid content did not demonstrate a significant trend. The chlorophyll and carotenoids of the basil showed no apparent concentration-dependent trends; however, the chlorophyll and carotenoids of the Korean mint and sweet wormwood decreased with high ethanol concentrations. Moreover, the antioxidant enzyme activity increased with high ethanol concentrations, indicating that high ethanol concentrations induce oxidative stress in plants.

Shin, J.; Lee, Y.; Hahm, S.; Lee, K.; Park, J. Effects of Exogenous Ethanol Treatment in Nutrient Solution on Growth and Secondary Metabolite Contents of Three Herb Species in an Indoor Vertical Farming System. Plants 2023, 12, 3842. https://doi.org/10.3390/plants12223842

Read the entire paper here

Publication date: