With animal-free dairy products and convincing vegetarian meat substitutes already on the market, it's easy to see how biotechnology can change the food industry. Advances in genetic engineering are allowing us to harness microorganisms to produce cruelty-free products that are healthy for consumers and healthier for the environment.
One of the most promising sources of innovative foods is fungi – a diverse kingdom of organisms that naturally produce a huge range of tasty and nutritious proteins, fats, antioxidants, and flavor molecules. Chef-turned-bioengineer Vayu Hill-Maini, an affiliate in the Biosciences Area at Lawrence Berkeley National Laboratory (Berkeley Lab), is exploring the many possibilities for new tastes and textures that can be made from modifying the genes already present in fungi.
"I think it's a fundamental aspect of synthetic biology that we're benefiting from organisms that have evolved to be really good at certain things," said Hill-Maini, who is a postdoctoral researcher at UC Berkeley in the lab of bioengineering expert Jay Keasling. "What we're trying to do is to look at what is the fungus making and try to kind of unlock and enhance it. And I think that's an important angle that we don't need to introduce genes from wildly different species. We're investigating how we can stitch things together and unlock what's already there."
In their recent paper, published today in Nature Communications, Hill-Maini and colleagues at UC Berkeley, the Joint BioEnergy Institute, and the Novo Nordisk Foundation Center for Biosustainability studied a multicellular fungus called Aspergillus oryzae, also known as koji mold, that has been used in East Asia to ferment starches into sake, soy sauce, and miso for centuries.
First, the team used CRISPR-Cas9 to develop a gene editing system that can make consistent and reproducible changes to the koji mold genome. Once they had established a toolkit of edits, they applied their system to make modifications that elevate the mold as a food source. First, Hill-Maini focused on boosting the mold's production of heme – an iron-based molecule which is found in many lifeforms but is most abundant in animal tissue, giving meat its color and distinctive flavor. (A synthetically produced plant-derived heme is also what gives the Impossible Burger its meat-duping properties.) Next, the team punched up production of ergothioneine, an antioxidant only found in fungi that is associated with cardiovascular health benefits.
Read the entire article at the Berkeley Lab